
AN ADVANCED SIMU1.A”I ION FF{AMFWORK FOF{

PAF?AL.L.EL. DISCREl”E-EVENT SIMULATION

F> Peggy Li, Flaymond Yeung,

D’arty Tyrrell, Nadia Adhami,

I“ienticm 1 i, t {ugh t{enry

Jet Propulsion Laboratory

California Instituto of I“echnology

4800 Clak Grove Drive, Mail Stop 138-310

F)asadena, California 91109

ABSTRACT—. —_____

Discrete-event simulation (DEVS)

users have long been faced with a three-

way trade-off of balancing execution time,

model fidelity, and number of objects

simulateci. Because of the limits of com-

puter processing power the analyst is often

forced to settle for less than desired

performance in one or more of these areas,

While parallel discrete-event simulation

has long been proposed as an approach to

overcoming these problems it is seldom

used by practicing analysts due to the

difficulty of developing parallel simuation

code.

l-his paper describes an environ-

ment that supports the simulation analyst in

the use of parallel processing technologies

in solving application-level simulation

problems. This environment, the Advanced

Simulation Framework, hides the details of

parallel processing from the simulation

analyst. 1 his permits the analyst to benefit

from the computational power of parallel

DEVS (PDEVS) without having to consider

the physical reality of a massively parallel

platform or network of processors.

lN_l RODUCTIW

Computer simulation users have

always been faced with a requirement to

trade-off the scale and scope of studies

with their computer’s performance and

capacity. l-his limitation on performance

impacts in several ways. If, as is often the

/ ’t.,.

case, the study uses Monte Carlo or

stochastic methods the number of repeateci

trials must be limited. Additionally, analysts

often cannot represent modeled entities at

the desired level of detail and/or must

restrict the number of entities modeled.

Whether limited by insufficient processing

power or computer memory, the constraints

of computer dependence continue to limit

the adequacy of computer-based

simulation analysis.

Historically, users have coped by

buying larger and more powerful

computers or by limiting the scope of their

investigations. There is, therefore, a need

for an environment for computer simulation

that is unconstrained by computer

limitations. In such an environment, if an

individual computer becomes overloacjed

the user can merely add another computer

or by using more nodes on a massively

parallel computer.

The Advanced Siniulation

Framework addresses this problem

through the application of the paradigms o’

object-oriented technologies to parallel

discrete-event simulation (PDEVS).

Although parallel processing may seem an

obvious solution to inadequate simulation

performance, in practice it is surprisingly

difficult (Fujimoto 1990). l-he complexity of

programming parallel software

discourages many analysts from using this

approach. A particular problem is the

difficulty of synchronizing the passage of

simulated time when multiple computer

processes are involved.

To achieve maximum performance

in a PDH/S environment, event

processing is typically distributed across

multiple processors. Events which affect

the state of the simulation are

communicated with time-star npeci

messages. Because of the requirement to

preserve causality it is essential that

messages be processed in nondecreasing

time-stamp order. If causality is not

preserved a tine acc~clenf occurs. A time

accident is an attempt to change the

(simulated) past. Most of the difficulty

associated with PDEiVS comes from the

mechanisms used to avoid time accidents.

1 hese mechanisms fall into two

general categories: conservative anti

optimistic. Conservative PDEVS ensure

that time accidents never happen.

optimistic F’EDS permit time accidents but

“clean up” their effects by detection of the

accident and ro//back: a return of the state

variables to their pre-accident state. The

Advanced Simulation Framework offers

both approaches as options to the user.

.,,. ‘,.*.

In this conservative approach, a

fixed duration of time, the time bucket, is

selected by the analyst, The modeling

assumption is then that all events occurring

within an individual time bucket are

independent. In other words, all processing

nodes can process all events within the

time bucket without fear of time accident.

After all processing nodes have completed

the time bucket they may exchange

messages for newly generated events. If

no events are scheduled for a time bucket

it is skipped as in a conventional serial

L)[VS. Nc)te that the time bucket may be

any size appropriate to the simulation

model; whether a nanosecond or a

century, it is merely data.

A drawback of this approach is that

processing nodes that finish early (before

the slowest node in the configuration) must

wait, not doing effective processing. 1 he

optimistic breathing the bucket algorithm

(Steinrnan 1992) attempts to make use of

these “wasted” CPU cycles.

~.F{EAIHING .TIME 13 UC.KEJ ALGOF\!l.E!.M

In the breathing time bucket

approach individual processing nodes may

process as events as far into the future as

desired as long as no event for another

nodes is generated. When an external

event is generated all nodes must

synchronize their simulated time clocks

and those nodes that have processed

ahead of the time of the new event must

rollback to that time. l-he ASF provides

support for incremental saving of

simulation object states and rollback to

prior states.

1 he remainder of this paper will

describe the implementation of the

Advanced Simulation Framework.

/VIVANC~~SiMUL ATIC)N F FIAM_&W.O_RK

OVFFWIE.W

The Advanced Simulation

Framework (ASF) provides distributed

simulation services for parallel discrete-

event simulation applications running on a

network of heterogeneous computers. The

ASF: is also an object-oriented application

that supports object-oriented simulation. It

is assUmed that the reader is familiar with

the fundamental concepts of object-

oriented software (Booth 91).

Within this functional context, a

sirnulaticm application is defined as a set of

C++ simulation objects and a scenario. A

simulation object consists of attributes that

define the state of the c)bject and event

methods that define how the object can

change states (its own or the states of other

objects) .

The scenario consists of a

configuration, which describes available

hardware resources, a description of the

initial state of each simulation object, and

one c)r more initial events. When both the

set of objects (i. e. the source code) and

the scenario are placed within the ASF: the

simulation applications are executed in a

distributed parallel environment.

l-he system architecture of ASF:-

baseci distributed simulations consists of

three layers, as shown in [igure 1. At the

top of the architecture is the distributed

application layer. An ASF-based

simulation normally consists of several

distributed ASF” application modules under

the control of the Simulation Controller

(sC).

In the middle is the Framework

services layer. The Framework provides a

library of platform-independent distributed

communication, object management, and

simulation synchronization and control

services. An enhancement to the

Framework will also provides standardizecj

interfaces (e.g., Distributed Interactive

Simulation (McDonald 93), Aggregate

L-evel Simulation F’rotocc)l (Mll” FIE 93)) to

allow external applications to be

confederated into the simulation.

At the bottom of the architecture is

the physical machine layer, which may

include Unix-based workstations, such as

Sun Sparcstations or Silicon Graphics

lf31Ss connected by a Local or Wide-area

Network, and distributed-memory parallel

machines, such as the Intel Delta, with

high-speed optic channels connected to

the rest of the network. l-he Framework is

ciesigned to hide all details of the physical

machine and network configuration from

the application programmer.

From an application programmer

analyst’s point of view the ASF consists of

a base C++- class c. s 1 MOW, from which

simulation objects inherit a variety of

methods, and the Simulation Controller.

‘1 hrough inheritance from the base classes

the simulation application gains the

services of the Event Queue Manager, the

1’ ramework Server, and the Object

Manager. l-he following sections will

describe these individual functions of the

ASF.

,
. ,,.,

/+

Sc -~y@iIEE%.@i~--
(@i==iii-_,__ _____ —

—!

Simulation
Controller

.— .—
Framework, ———. _

Event Queue, &
Object Managers

— — .—

Distributed
Router

.— .—

Workstations

Legend:

SC - Simulation Controller FS - Framework Server
EQM - Event Queue Manager OM - Object Manager
DF{ - Distributed Router

Figure 1. A Layered Software View of an Advanced Simulation Framework-based Simulation

Or run of the ASF-based simulations
SIMULAI.ION CON] ROL1. ER AND including:
~RAME:WOR.K SERVE.R ● Setting up simulation configuration

parameters, initialization values, and
~“he Simulation Controller is the various simulatiotj support options.

Framework’s human user interface to ASF-
● Controlling the start and stop of

based simulations. It provides an X- simulation and issue simulation control
window/Motif-based user interface control commands such as check pointing.
panel allowing the user to monitor and

● Monitoring application status, error
control the simulation. From the main and warning messages, ancj Framework
control panel the user can perform a service utilization.
variety of functions during each execution

?.,,
●

● Sending commands to simulation

objects for “man-in-the-loop” interactivity.

The Simulation Controller performs these

functions through interaction with the

distributed Framework Servers as

described in the next section.

-~f~~lework.Server

The simulation controller interacts with

individual simulation applications via a

network of distributed Framework Servers.

1 he Framework server is a framewc}rk

system object that resides on a processing

node and manages all simulation monitor

and control functions on that node. ‘1 he

n-lain functions of the Framework server

are:
● Initializing local Framework-based

simulation services such as the Object

Manager, the Event Queue Manager, and

the Distributed Flouter interfaces.
● Maintaining the application’s state

and status such as initialization

parameters, simulation and processing

time, and checkpoint and processing

Statlls.
b Cooperating with the Simulation

Controller to monitor and control the

simulation and to maintain a consistent

system state.

ASF-based simulation applications

do not cjirectly interact with the Framework

server. Instead, the Framework provides a

set of functions that interface with

simulation applications. T-he following

processing steps outline the typical

interaction between a simulation

application and the Framework server.

Step 1: The simulation application

initializes its F ramework support by calling

the Framework interface function

s.j m i nj t,. The Framework Server will

initialize the connection tc) the router, the

simulation controller, ancj all Framework

service objects.

Step 2: After the initialization c)f local

Framework support functions, the

application can retrieve its node-

dependent Framework initialization

parameters by calling the Framework
interface function ~i Ill. pd7” ZlI[L

Step 3: After retrieving node-

ciependent initialization parameters,

application can perform application-

specific initialization tasks, such as

the

registering object and event handlers.

Step 4: After completing its

application-specific initialization tasks, the

application can start its simulation by

calling the Framework interface function

s,jr[l. start . The F-ramework server will

take over the control of simulation from this

point on.

Step 5: [)uring the simulation, the

Framework server will cooperate with the

simulation controller and handle monitor

ancj control requests from the controller

. . .

such as pause, continue, checkpoint, and

shutcio wn.

l“he Framework server is very much

like a local agent of the simulation

controller. It provides an interface allowing

the users to start the simulation,

checkpoint/restart the simulation, and to

query the state of the simulation via the

contrcdler’s console.

T-he Framework provides a
distributed-event queue management

service via a network of cooperating event

queue managers. The E;vent Queue

Manager is a framework system object that

resides on a processing node and
manages all simulation events on that

node. The main functions of the Event

Queue Manager are:

● Managing local simulation events

activities, such as event creation,

processing, and deletion.
● Maintaining an event-driven local

simulation time clock and using it to trigger

event execution.
● Maintaining processed events and

the state change stack to support local

rollback.
● Synchronizing and cooperating with

other event queue managers to maintain a

consistent simulation time space.

ASF-based simulation applications

do not directly interact with the Event

Quelle Manager, Instead, the Framework

provides a set of Framework event c]ueue

management functions that interface with

simulation applications. The following

processing steps outline the typical

interaction between a simulation

application and the Event Queue Manager.

Step 1: A simulation object class is

defined, based on the c:. s] MOXI class
and supplemented with application-

specific state variables and methods,

including event handling methods, i.e.,

event handlers.

Step 2: The application registers

these event handlers with a f ramewcxk
E=vent Queue Manager by calling the

Framework interface function
~jl[l r~?clj F, LC>l-143/C71”1t Fl:indl cr. After the

registration, the Event Queue Manager will

add entries to its table to associate the

object’s type and event type with these

event handlers.

Step 3: When the application needs

to create a new simulation event, it calls

the framework interface function
sirn- new~vent with four event attribute

parameters: event time, event type, event

recipient, and event content. The Event

Queue Manager will add the new event to

its queue in the appropriate time order.

Step 4: As determined by the

simulation synchronization method used,

i.e., fixed time bucket or breatkling time

bucket, the Event Queue Manager will

send external events out and receive its

events from other event queue managers

at the system synchronization time. The

incoming events will be added to its queue

in the appropriate time order.

Step 5: When the scheduled

execution time of an event is reached, the

Event Queue Manager will perform a table

lookup for the simulation object and its

event handler. The handler will k)e invoked

to process the event with event content

passed as an argument.

Step 6: If a processed event needs

to be rolled back, as required in the

breathing time bucket synchronization
scheme, the event manager will pop the

state change stack and restore the

simulation object to the correct prior state.

The processed events and the state

change stack will not be released until the

next system synchronization time.

Step 7: If the application needs to

remove a scheduled event, it can call the

Framework interface function
Sj I[i CI(:I ct.c~):v~I~t. to remove it. l-he

Object Manager will look up its queue and

remove the event when possible,

The Event Queue Manager is very

much like a housekeeper who controls all

events on its nocie and keeps them in the

proper order. In addition to providing

application interfaces for users to register

event handier functions, create new

events, ancj delete existir-rg events, the

main tasks of an Event Queue Manager

are to maintain the local simulation clock,

control the event execution sequence, and

perform local roll back if necessary.

l“he Framework provides a

ciistributed object management service via

a network of cooperating Object Managers.

The Object Manager is a framework :;ystem

object that resides on a processing node

and manages all local simulation objects

on that node. The main functions of the

Object Manager are:

● Managing local simulation objects

activities, such as object creation,

initialization, and deletion.
● Locating and translating simulation

object addresses. Local and remote

objects may be referenced by using their

name.
● Synchronizing and cooperating with

other object managers to maintain a

consistent name and address space for
simulation objects.

ASF-based simulation applications

cjo not directly interact with the Object

Manager. Instead, the Framework

provides a set of functions and a

simulation object handler class,

c:. SOFIaIId I cr, that interface with

generic

simulation applications. l-he following

processing steps outline the typical

interaction between a simulation

application and the Object Manager.

Step 1: A simulation object class is

defined, based on the c.. SIMOKJ class and

augmented with application-specific state

variables and methods.

Step 2: A handler for the simulation

object class is defined; based on the

c. SC) IIanCII er class which provides

customized access methods for the

creation, initialization, and lookup

functions.

Step 3: l-he application registers the

simulation object handler class with its

Object Manager by calling the framework

interface function

si III.]-c!gi st. erobj} iand] er. After the

registration, the Object Manager will add

an entry to its table to associate the

object’s type name with the handler.

Step 4: l-he application creates a

simulation object by calling the framework

interface function ~j J[l_ I“16!W~)b:j (2Ct.. ~“he

Object Manager will perform a table lookup

for the handler and then use the handler’s

access method to create an object. An

entry is also added for the newly created

object.

Step 5: If customized initialization is

required, the application will Call the

framework interface function

sire. illit C)13ject. 1 he Object Manager

will perform a table lookup for the ok)ject

and its handler and then use the handler’s

access method to initialize the object.

Step 6: Whenever a name is

referenced, the Object Manager will

perform a table lookup for the object. It

may look for the object handler also, if the

customized lookup function is required.
Step 7: If the object is no longer

needed, the application may call the

framework interface function

sirn. deleteObject to remove it. The Object

Manager will perform a table lookup for the

object and its handler and then use the

handler’s access method to delete the

object.

1 he most important function of an

Object Manager is to locate simulation

objects. By default, the Object Mana{ger

uses a table to look LJp local and remote

cjbjects. But, since an application

programmer may know how simulation

objects are named and distributed, a

customized user lookup function for the

class of simulation objects can provide a

faster and more efficient method for

Ic)cating objects.

1JlSTI{lBllTE~O_F30UTE[l

The framework provides a

cjistributed messaging service via a

network of cooperating Distributed Flouters.

1 he [distributed Router is a framework

system object (not a piece of hardware)

that resides on several key processing

nodes and manages the routing and

delivery of ASF messages. The distributed

routers provide a library of communication

service functions. l“hese functions allow

distributed application modules to do

blocking and non-blocking send/receive

kmtween dynamically-registered resources.

1-
0 use these communication

functicms, application modules, e.g.,

framework system objects such as the

Object Manager, the Framework Server

and the Event Queue Manager, will first

register their resource names with their

routers. Then communication can be

performed by calling functions to send

messages to designated resources. The

[distributed Router will translate the

resource name to addresses and deliver

the message to the receiving application

applications. Appropriate message

handling functions of the receiving

or

application will be invoked to process the

incoming messages.

‘1 he communication model used is a

unique dynamic name-based active

communication model. Name-based

communication refers to the fact that

messages are delivered to a named mail-

box, or resource, rather than to a physical

address. Each Distributed F{outer

maintains a copy of the name-to-address

mapping table and uses it to translate

resource names to addresses. l-he name-

to-address mapping is a many-to-many

function which can map a resource name

to zero, one, or more addresses. T“his

concept provides a unified model of

commonly used communication methods

including: unicast, multicast, and broadcast

con-lmunication .l”his concept allows one to

separate the logical communication

architecture from the physical one, so that

simulation applications can be developed

based totally cm a logical communication

architecture.

l“he name-to-address mapping

table can be dynamically modified to reflect

changes in the underlying physical

communication architecture. Also, th~

resource name can be dynamically addeci

to or deleted from the mapping table to

reflect changes in the logical

communication architecture.

l-he term acfive communication
model refers to the fact that after the rlarne-

to-address translation, the message is not
simply delivered to a holding place at the

receiving address, but it is also used to

activate a specific handler, or callback

method, at that adclress to process the

message automatically.

QAN!Affx

The Advanced Simulation

Framework uses the technologies of

object-oriented design and programming

to permit simulations to be executed in a

computationally unconstrained

environment. By hiding the technical

cjetails of distributed anti parallel

simulation the ASF permits the simulation

analyst to concentrate his or her energies

analytic rather than computer scienc~

issues.

A.CKNQWLLD3.F MENIS

The authors would like to

acknowledge the significant contributions

of Dr. Jeffery Steinman, Dr. Yu-Wen Tung

and Mr. James Lathrop to the design of the

Advanced Simulation Framework. Dr.

David Curkendall is the manager of the

Advanced Laboratory for Parallel High

Performance Applications (ALPI 1A)

Project.

The research described in this

paper was carried out by the Jet

Propulsion l-aboratory, California Institute

of l“echnology, and was sponsored by the

L)nited States Air Force Electronic Systems

Center XR/P “Advanced F)rograms and

Analysis,” I{anscom Air Force Base,

Massachusetts, through an agreement with

the National Aeronautics and Space

Administration.

Reference herein to any specific

commercial product, process or service by

trade name, trademark, manufacturer, or

otherwise, does not constitute or imply its

endorsement by the Unitecj States

(~ovcrnrnent of the Jet I)ropulsion

Laboratory, California Institute of

Technology.

Dooch, G. 1991. Object-Orierrteo’ Design

with Applications. Benjamin Cummings,

Redwood City, CA

f:ujimoto, R. 1990. ‘(Parallel Discrete [=vent

Simulation. ” Communications of the ACM
33 no. 10 (Oct.): 30-53.

McDonald, B,; C. Bouwens; and D. Carr,

ecjs. 1992, “Summary Heport ,1 he Sixth

Workshop on Standards fclr the

Interoperability of Defense Simulations, ”

Institute for Simulation and 1 raining

University of Central Florida, Orlando, F1.,

(Mar.)

MIT FIE; Corporation, 1993, “Aggregate

Level Simulation Protocol Technical

Specification.” Mc Lean, VA. (Feb.)

.,
> .

Steinman, J. 1992 “SPFEDES: A Multiple

Synchronization Environment for Parallel

Discrete-Event Simulation. ” /nternationa/

Journal in Computer Simulation 2, 251-

286.

